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Motivated by recent results in the theory of correlated sequences, we analyze the dynamics of random walks
with long-term memory(binary chains with long-range correlations). In our model, the probability for a unit bit
in a binary string depends on thefraction of unities preceding it. We show that the system undergoes a
dynamical phase transition from normal diffusion, in which the varianceDL scales as the string’s lengthL, into
a superdiffusion phasesDL,La ,a.1d, when the correlation strength exceeds a critical value. We demonstrate
the generality of our results with respect to alternative models, and discuss their applicability to various data,
such as coarse-grained DNA sequences, written texts, and financial data.
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Dynamical systems with long-range spatial(and/or tem-
poral) correlations are attracting considerable interest across
many disciplines. They are identified in physical, biological,
social, and economic sciences(see, e.g.,[1–9] and references
therein). Of particular interest are situations in which the
system can be mapped onto a mathematical object, such as a
correlated sequence of symbols, preserving the essential sta-
tistical properties of the original system.

One of the methods most frequently used to obtain insight
into the nature of correlations in a dynamical system consists
of mapping the space of states onto two symbols[5]. Thus,
the problem is reduced to the exploration of the statistical
properties of correlated binary chains. This can also be
viewed as the analysis of a history-dependent random walk.
Random walk is one of the most ubiquitous concepts of sta-
tistical physics. It lends applications to numerous scientific
fields (see, e.g.,[10–16] and references therein).

It is well established that the statistical properties of
coarse-grained DNA strings and written texts significantly
deviate from those of purely random sequences[2,17]. Fi-
nancial data(such as stock market quotes) are similarly far
from being pure diffusive. Moreover, these systems exhibit
“superdiffusive” behavior in the sense that the varianceDsLd
grows asymptotically faster thanL (whereL is the length of
the considered text). Specifically, D,La, with a.1 [5].
Such a remarkable(and essentially universal) phenomenon
can be attributed to long-range positive correlations. Systems
with such correlations may be anticipated to exhibit a dy-
namical phase transition(from normal to superdiffusive be-
havior) at some critical correlation strength.

Thus, the problem of random walk where the jumping
probabilities are history dependent is of great interest for
understanding the behavior of systems with long-range cor-
relations, such as DNA strings, written texts, and financial
data. In the present paper we analyze this problem, and pro-
vide a simple yet generic analytical description of the statis-
tical properties of these systems.

We begin by solving a simple model which incorporates
long-range correlations into an otherwise random sequence.
We consider a discrete binary string of symbols,ai =h0,1j, in
which the conditional probability of a given symbol(say, a

unit bit) occurring at the positionL+1 is history dependent,
and given by

psk,Ld =
1

2
S1 − m

L − 2k

L + L0
D , s1d

wherek is the number of such symbols(unities) appearing in
the precedingL bits. The correlation parameterm, where
−1,m,1, determines the strength of correlations in the
system. The persistence conditionm.0 implies that a given
symbol in the preceding sequence promotes the birth of a
new identical symbol. On the other hand, in the anti-
persistence regionm,0, each symbol inhibits the appear-
ance of a new identical symbol. The parameterL0.0 is a
characteristic transient time. ForL!L0 the sequence is ap-
proximately random(uncorrelated), whereas forL@L0 the
effect of long-range correlations takes over[18].

In this model, the conditional probabilitypsk,L ;m ,L0d
depends on the fraction of unities(or zeroes) in the preceding
bits, and is independent of their arrangement. This allows
one to obtain an analytical description of the system’s dy-
namical behavior. As we shall demonstrate below, this simple
model provides a good quantitative description of the ob-
served statistical properties of various natural systems, such
as coarse-grained DNA strings, written texts, and financial
data.

The probabilityPsk,L+1d of finding k identical symbols
(say, unities) in a sequence of lengthL+1 follows the evo-
lution equation

Psk,L + 1d = f1 − psk,LdgPsk,Ld + psk − 1,LdPsk − 1,Ld.

s2d

Crossing to the continuous limit, one obtains the Fokker-
Planck diffusion equation for the correlated process,

]P

]L
=

1

2

]2P

]x2 −
m

L + L0

]sxPd
]x

, s3d

wherex;2k−L [19]. The evolution equation(3), along with
the initial conditionPsx,L=0d=dsxd, has a solution in the
form of a Gaussian distribution
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Psx,Ld =
1

Î2pDsLd
expF−

x2

2DsLdG , s4d

where the varianceDsLd is given by

DsL;m,L0d =
L + L0

1 − 2m
F1 −S L0

L + L0
D1−2mG . s5d

Equation (5) breaks down at the special casem=1/2, in
which case the variance is given by

DsL;mc,L0d = sL + L0dlnSL + L0

L0
D . s6d

Remarkably, one finds that the correlated system under-
goes a dynamical phase transition at the critical correlation
strengthmc;1/2. The varianceDsLd of the correlated se-
quence has three qualitatively different asymptotic behaviors
(in the L@L0 limit )

DsLd . 5 s1 − 2md−1L m , mc,

L lnsL/L0d m = mc,

s2m − 1d−1L01−2mL2m m . mc.
6 s7d

Thus, form,mc the asymptotic variance scales linearly with
the string length, whereas for a history-dependent chain with
strong positive correlationssm.mcd the system is character-
ized by a superdiffusion phase, in which caseDsLd~La,
wherea=2msa.1d [20].

The analytical model can readily be extended to encom-
pass situations in which the binary sequence is biased. Let

psk,Ld =
1

2
S1 + q − m

L − 2k

L + L0
D , s8d

with −1,q,1. The distributionPsx,Ld corresponding to
this conditional probability is given by a Gaussian function,
centered about the position

xcsLd =
q

1 − mS L

L + L0
DL. s9d

Thus, the drift velocity approaches an asymptotically con-
stant valueq/ s1−md. The varianceDsLd, unaltered by the
bias is given by Eqs.(5) and (6).

In order to confirm the analytical results, we perform nu-
merical simulations of(discrete) binary sequences. Figure 1
displays the resulting scaled varianceL−1DsLd of correlated
strings with various different values of the correlation param-
eterm. We find an excellent agreement between the analyti-
cally predicted results[see Eqs.(5) and(6)] and the numeri-
cal ones.

Robustness of the linear model.In order to show the gen-
erality of the model discussed above, we consider arbitrary
(history-dependent) jump probabilities which are odd func-
tions [21] of the fractionj;x/ sL+L0d of unities(zeros) that
appeared in the previousL symbols

psx,Ld =
1

2
f1 + mFsjdg. s10d

For asymptotically largeL, one always findsj→0 for non-
ballistic diffusion, justifying a power-law expansion ofFsjd.
As long as this expansion includes a linear term, the original
differential equation(3) is recovered for largeL. We there-
fore expect the previous analytical results[Eqs.(5) and (6)]
to hold true for generic(nonlinear) models as well. The gen-
erality of the model is illustrated in Fig. 2, in which we
depict results for various choices of the probability function
Fsjd. As predicted, the results are found to agree with the
linear model.

FIG. 1. The scaled varianceL−1DsLd as a function of the string
lengthL. We present results form=−0.8, −0.4, 0, 0.2, 0.5, 0.8, and
0.9 (from bottom to top), with L0=100. The numerically computed
asymptotic slopes agree with the analytical predictions[see Eqs.(5)
and (6)] to within less than 1%.

FIG. 2. The scaled varianceL−1DsLd for three different forms of
the function Fsjd: j, s2/pdsinfsp /2djg, and tanhsjd. We present
results form=−0.8 andm=0.8, with L0=100. The different curves
are almost indistinguishable.
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Applications. The robustness of the linear model(see Fig.
2) suggests that it may capture the essence of the underlying
correlations in a diversity of systems in nature. We therefore
examine the use of the results derived in the present work as
an analytical explanation for the observed statistical proper-
ties of natural systems, such as DNA strings, written texts,
and financial data[22].

As mentioned, these systems often exhibit a significant
deviation from random sequences[2,17], and are character-
ized by a superdiffusive behavior in whichD,La, with
a.1 [5]. In such systems, superdiffusion may be attributed
to long-range(positive) correlations. In fact, the analytical
model allows one to determine the correlation strength of
these chains.

Figure 3 depicts the scaled varianceL−1DsLd calculated
from DNA sequences of various organisms, as a function of
the string lengthL. It is of considerable interest to examine
in such methods the statistical properties characterizing the
DNA of organisms in various evolutionary levels: Bacillus
subtilis (Bacteria), Methanosarcina acetivorans(Archaea),
and Drosophila melanogaster(Eukarya) [5,23]. The theoret-
ical model provides a good description of the empirical data
[24], attributing different correlation strengthsm to different
organisms, as summarized in Table I.

The superdiffusive behavior, shown in Fig. 3 to persist
across very long sequences, is highly suggestive of long-
range correlation extending over more than one gene(e.g.,
,53104 base pairs in Drosophila). This result is in accord
with recent studies[25].

In Fig. 4 we show the scaled variance of coarse-grained
financial data[daily quotes of the Dow Jones industrial av-
erage(DJIA), and the NASDAQ[26]]. We note that the lin-
ear model underestimates the empirical variance at short
time scales. This fact can be traced back to short-term corre-
lations in the markets.(It is interesting to note that the DJIA
maintains an approximately normal diffusive behavior for a
period of about one month.) However, this short-term
memory is washed out at longer time scales, in which case

the analytical model provides a good description of the em-
pirical results, as evident from Fig. 4. The corresponding
values of the correlation parameterm are summarized in
Table I. Table I also presents the results of the analytical
model applied to various coarse-grained written texts
[2,17,5]. The parameterL0 can be read directly from the
figures.

In summary, in this paper we have analyzed the dynamics
of random walks withhistory-dependentjump probabilities.
Our work was motivated not only by the intrinsic interest in
such dynamical processes, but also by the flurry of activity in
the field of long-range correlated systems, and by some uni-
versal statistical features observed in many different natural
systems.

We have broadened the study of binary strings to include
long-range correlations, extending throughout the length of
the chain. Using a simple and exactly solvable model, we
identify a dynamical phase transition, from normal diffusion

FIG. 3. The scaled varianceL−1DsLd as a function of the string
lengthL, for coarse-grained DNA sequences of various organisms.
The mapping and parameters used are given in Table I. Theoretical
results[see Eq.(5)] are represented by curves.

TABLE I. The correlation strength parameterm for various bi-
nary strings. We use the following mappings:hA,Gj→0, hC,Tj
→1 for DNA sequences[5,23]; sa to md→0, sn to zd→1 for writ-
ten texts[5]; and daily fall→0, daily rise→1 for stock market
quotes[26].

Data type String source m

DNA sequences Drosophila melanogaster 0.57

Methanosarcina acetivorans 0.70

Bacillus subtilis 0.86

Written texts Alice’s Adventures in Wonderland 0.58

The Holy Bible in English 0.84

Works on Computer Science 0.88

Stock markets NASDAQ 0.39

DJIA 0.76

FIG. 4. The scaled varianceL−1DsLd as a function of the se-
quence lengthL, for coarse-grained financial data: DJIA and
NASDAQ daily quotes[26]. The mapping and parameters used are
given in Table I. Theoretical results[see Eq.(5)] are represented by
curves.
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fDsLd,Lg to superdiffusive behaviorfDsLd,L2mg, taking
place as the correlation parameterm exceeds its critical
value. We show that in spite of the simplicity of the model, it
is robust, and can easily be extended to describe various
features(such as a biased history-dependent random walk or
subdiffusion).

Next, we have applied the analytical results of the model
to various binary strings, extracted from very different natu-
ral systems, such as coarse-grained DNA sequences, written
texts, and financial data. We find that the model adequately
describes the long-term behavior of these systems. Further-
more, the model provides a straightforward method to mea-
sure the correlation strength of these systems. Our results can
be applied to various natural systems, and may shed light on

the underlying rules governing their dynamics. For example,
the superdiffusive behavior of DNA sequences(see Fig. 3)
suggests long-range correlations extending across more than
one gene. The model attributes different correlation strengths
to different organisms.
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