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Motivated by recent results in the theory of correlated sequences, we analyze the dynamics of random walks
with long-term memorybinary chains with long-range correlations our model, the probability for a unit bit
in a binary string depends on tHeaction of unities preceding it. We show that the system undergoes a
dynamical phase transition from normal diffusion, in which the varidhcecales as the string’s length into
a superdiffusion phag® ~ L%, a> 1), when the correlation strength exceeds a critical value. We demonstrate
the generality of our results with respect to alternative models, and discuss their applicability to various data,
such as coarse-grained DNA sequences, written texts, and financial data.
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Dynamical systems with long-range spatiahd/or tem-  unit bit) occurring at the positioh +1 is history dependent,
poral) correlations are attracting considerable interest acrosand given by
many disciplines. They are identified in physical, biological,
social, and economic sciencgwe, e.g.j1-9) and references p(k,L) = }(1 —ML _ 2k> ' (1)
therein. Of particular interest are situations in which the 2 L+Lg
system can be mapped onto a mathematical object, such as %erek is the number of such symbalsnities appearing in

correlated sequence of symbols, preserving the essential St\t%e precedingl. bits. The correlation parametgr, where

tistical properties of the original system. ) . .
One of the methods most frequently used to obtain insight l<p<1, deterr_mnes the st_rgngth .Of c_orrelatlons n the
ystem. The persistence conditign>0 implies that a given

into the nature of correlations in a dynamical system consistg mbol in the oreceding sequence promotes the birth of a
of mapping the space of states onto two symibls Thus, 4 ! P INg sequ P :

the problem is reduced to the exploration of the statistica['®W identical symbol. On the other hand, in the anti-

properties of correlated binary chains. This can also bé)ersistence regiop. <0, each symbol inhibits the appear-

viewed as the analysis of a history-dependent random walidnce of a new |der_1t|cal_symbol. The paraméigl>0 Isa
Random walk is one of the most ubiquitous concepts of Sta(_:haracterlstlc transient time. Far<L, the sequence is ap-

tistical physics. It lends applications to numerous scientificprox'mate'y randon‘(uncorre_lateyi whereas forL.>L, the
fields (see, e.g9.[10-1§ and references thergin effect OT long-range correlappns takes o@:ﬁ]. )

It is well established that the statistical properties of In this model, th(_a condltl_o_nal probab_lhtp(k,L,,u,Lp)
coarse-grained DNA strings and written texts significantlydfape”dS on t_he fraction of un|t|ee_zr zeroegin the precgdlng
deviate from those of purely random sequenf247]. Fi- bits, and |s.|ndependen_t of their arrangement. This ?.HOWS
nancial datasuch as stock market quojeare similarly far one to obtain an analytical description of the system’s dy-

from being pure diffusive. Moreover, these systems exhibiffamical behavior. As we shall demonstrate below, this simple
“superdiffusive” behavior in the sense that the variab¢k) model prov_ld_es a good quantitative description of the ob-
grows asymptotically faster thdn(whereL is the length of served Stat'St'(.:al propertles. of various natural SVStefT‘S’ Sl.JCh
the considered text Specifically, D~L¢, with a>1 [5]. g;t;oarse-gramed DNA strings, written texts, and financial
Such a remarkabléand essentially universaphenomenon : - - : .
can be attributed to long-range positive correlations. System The prpbe}b|l|tyP(k,L+1) of finding k identical symbols
with such correlations may be anticipated to exhibit a dy- Say, un|t|e$_|n a sequence of length+1 follows the evo-
namical phase transitioffrom normal to superdiffusive be- Ution equation
havior at some critical correlation strength. P(k,L+1) =[1 - p(k,L)]P(k,L) + p(k - 1,L)P(k - 1,L).

Thus, the problem of random walk where the jumping
probabilities are history dependent is of great interest for ()
understanding the behavior of systems with long-range corcrossing to the continuous limit, one obtains the Fokker-

relations, such as DNA strings, written texts, and financialp|gnck diffusion equation for the correlated process
data. In the present paper we analyze this problem, and pro- ’

vide a simple yet generic analytical description of the statis- P 1#P u IxP) 3

tical propertles of thgse systems. o L 2@ L+l ox )
We begin by solving a simple model which incorporates

long-range correlations into an otherwise random sequenc&herex=2k-L [19]. The evolution equatio(B), along with

We consider a discrete binary string of symbals;{0,1}, in  the initial conditionP(x,L=0)=4(x), has a solution in the

which the conditional probability of a given symb@ay, a form of a Gaussian distribution
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P(X,L) = — em{— X ] (4)
" \2#D(L) 2D(L) |
where the varianc®(L) is given by
D(L;u,Lg) = 1- . 5
(L Lo) 1_2M[ L+L, (5

Equation (5) breaks down at the special cage=1/2, in
which case the variance is given by

+Lo

L).

Lo

D(L;,uc,Lo):(L+L0)|n(L (6)

Remarkably, one finds that the correlated system under:
goes a dynamical phase transition at the critical correlation

strengthu.=1/2. The varianceD(L) of the correlated se-
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quence has three qualitatively different asymptotic behaviors F|G. 1. The scaled variandeXD(L) as a function of the string

(in theL>Lg limit)

1-20™ < p
L In(L/Lo) M= e,
(2p= D)oy g L% 1> pe.

D(L) = (7)

Thus, foru < u. the asymptotic variance scales linearly with

lengthL. We present results fqu=-0.8, -0.4, 0, 0.2, 0.5, 0.8, and
0.9 (from bottom to top, with Ly=100. The numerically computed
asymptotic slopes agree with the analytical predictisee Eqs(5)
and(6)] to within less than 1%.

1
p(x,L) = 5[1 +uF(é)]. (10

the string length, whereas for a history-dependent chain with

strong positive correlationgw> ;) the system is character-
ized by a superdiffusion phase, in which cad€L)ocL?,
wherea=2u(a>1) [20].

The analytical model can readily be extended to encom
t

pass situations in which the binary sequence is biased. Le

)

with —1<g<1. The distributionP(x,L) corresponding to
this conditional probability is given by a Gaussian function,
centered about the position
q
™

L+Lg

L -2k
L+Lg

1
p(k,L)=§(1 Q- p )

X(L) = L. (9)

Thus, the drift velocity approaches an asymptotically con- _

stant valueq/(1-u). The varianceD(L), unaltered by the
bias is given by Eqs5) and(6).

In order to confirm the analytical results, we perform nu-
merical simulations ofdiscretg binary sequences. Figure 1
displays the resulting scaled variance'D(L) of correlated

strings with various different values of the correlation param-

eter u. We find an excellent agreement between the analyti
cally predicted resultfsee Eqs(5) and(6)] and the numeri-
cal ones.

Robustness of the linear modei.order to show the gen-

For asymptotically largé., one always findg— 0 for non-
ballistic diffusion, justifying a power-law expansion Bfé).

As long as this expansion includes a linear term, the original
differential equation(3) is recovered for largé. We there-
fore expect the previous analytical resylEgs. (5) and(6)]

to hold true for generi¢nonlineaj models as well. The gen-
erality of the model is illustrated in Fig. 2, in which we
depict results for various choices of the probability function
F(¢). As predicted, the results are found to agree with the

linear model.

10

1

L~'D(L

erality of the model discussed above, we consider arbitrary FG. 2. The scaled variande!D(L) for three different forms of

(history-dependentjump probabilities which are odd func-
tions[21] of the fractioné=x/(L+L) of unities(zerog that
appeared in the previous symbols

the functionF(&): & (2/m)sin(7/2)€], and tanké). We present
results foru=-0.8 andu=0.8, withLy=100. The different curves
are almost indistinguishable.
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- " . TABLE I. The correlation strength parameterfor various bi-
—— Bacillus subtilis R . . .
2|| o - Methanosarcina acetivorans nary strings. We use the following mappind#,G}—0, {C, T}
0 Drosophila melanogaster ] — 1 for DNA sequencef5,23); (a to m)—0, (nto z)— 1 for writ-
ten texts[5]; and daily fall-0, daily rise—1 for stock market
quotes[26].
Data type String source s
DNA sequences Drosophila melanogaster 0.57
Methanosarcina acetivorans 0.70
Bacillus subtilis 0.86
Written texts Alice’s Adventures in Wonderland 0.58
The Holy Bible in English 0.84
Works on Computer Science 0.88
Stock markets NASDAQ 0.39
DJIA 0.76

FIG. 3. The scaled variande'D(L) as a function of the string
lengthL, for coarse-grained DNA sequences of various organismsthe analytical model provides a good description of the em-
The mapping and parameters used are given in Table I. Theoreticgirical results, as evident from Fig. 4. The corresponding
results[see Eq(5)] are represented by curves. values of the correlation parametgr are summarized in
Table I. Table | also presents the results of the analytical
odel applied to various coarse-grained written texts
,17,9. The parametek, can be read directly from the

Applications The robustness of the linear modsée Fig.
2) suggests that it may capture the essence of the underlyigg
correlations in a diversity of systems in nature. We therefore:
examine the use of the results derived in the present work res. N .
an analytical explanation for the observed statistical proper- " Summary, in this paper we have analyzed the dynamics
ties of natural systems, such as DNA strings, written textsQf random walks withhistory-dependerjump probabilities.
and financial dat§22]. Our work was motivated not only by the intrinsic interest in

As mentioned, these systems often exhibit a significanfuch dynamical processes, but also by the flurry of activity in
deviation from random sequencgx17], and are character- the field of long-range correlated systems, and by some uni-
ized by a superdiffusive behavior in whidh~L®, with  Vversal statistical features observed in many different natural
a>1[5]. In such systems, superdiffusion may be attributedSyStems.
to long-range(positive) correlations. In fact, the analytical ~ We have broadened the study of binary strings to include
model allows one to determine the correlation strength ofong-range correlations, extending throughout the length of
these chains. the chain. Using a simple and exactly solvable model, we

Figure 3 depicts the scaled variance'D(L) calculated identify a dynamical phase transition, from normal diffusion
from DNA sequences of various organisms, as a function of .
the string length_. It is of considerable interest to examine H — NASDAQ
in such methods the statistical properties characterizing the 1--- DJIA
DNA of organisms in various evolutionary levels: Bacillus 5 O:
subtilis (Bacterig), Methanosarcina acetivorar@&rchaes, L
and Drosophila melanogastétukaryg [5,23. The theoret-
ical model provides a good description of the empirical data
[24], attributing different correlation strengthsto different av'
organisms, as summarized in Table I.

The superdiffusive behavior, shown in Fig. 3 to persist
across very long sequences, is highly suggestive of long:
range correlation extending over more than one geng.,
~5X 10* base pairs in DrosophilaThis result is in accord
with recent studie$25].

In Fig. 4 we show the scaled variance of coarse-grained
financial data/daily quotes of the Dow Jones industrial av- 1.0
erage(DJIA), and the NASDAQ26]]. We note that the lin-
ear model underestimates the empirical variance at short
time scales. This fact can be traced back to short-term corre- F|G. 4. The scaled variande™XD(L) as a function of the se-
lations in the marketglt is interesting to note that the DJIA quence lengthL, for coarse-grained financial data: DJIA and
maintains an approximately normal diffusive behavior for aNASDAQ daily quoteg26]. The mapping and parameters used are
period of about one month.However, this short-term given in Table I. Theoretical resulfsee Eq(5)] are represented by
memory is washed out at longer time scales, in which caseurves.

T
=
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[D(L)~L] to superdiffusive behaviofD(L)~ L?*], taking  the underlying rules governing their dynamics. For example,
place as the correlation parameter exceeds its critical the superdiffusive behavior of DNA sequendsge Fig. 3
value. We show that in spite of the simplicity of the model, it Suggests long-range correlations extending across more than
is robust, and can easily be extended to describe varioude gene. The model attributes different correlation strengths
featureg(such as a biased history-dependent random walk of© different organisms.

subdiffusion. _ _ The research of S.H. was supported by the GIF Founda-
Next, we have applied the analytical results of the modeli;, ang by the Dr. Robert G. Picard Fund in Physics. We

to various binary strings, extracted from very different natu-yoy Jike to thank Oded Agam, Yitzhak Pilpel, Eli Keshet,
ral systems, such as coarse-grained DNA sequences, WrittRna Keshet, Clovis Hopman, Eros Mariani, Assaf Pe’er,
texts, and financial data. We find that the model adequatelpded Hod, and Ehud Nakar for helpful discussions. We
describes the long-term behavior of these systems. Furthefhank O. V. Usatenko and V. A. Yampol'skii for interesting
more, the model provides a straightforward method to meadiscussions and for providing us with their data. This re-
sure the correlation strength of these systems. Our results cgearch was supported by Grant No. 159/99-3 from the Israel

be applied to various natural systems, and may shed light o8cience Foundation.

[1] R. N. Mantegna and H. E. Stanley, Natyte®ndon) 376, 46
(1995.
[2] I. Kanter and D. F. Kessler, Phys. Rev. Letd, 4559(1995.
[3] H. E. Stanleyet al, Physica(Amsterdam 224A, 302 (1996.
[4] A. Provata and Y. Almirantis, PhysiceAmsterdam 247A,
482 (1997).
[5] O. V. Usatenko and V. A. Yampol'skii, Phys. Rev. Le®0,
110601(2003.
[6] A. C. C. Yang, S. S. Hseu, H. W. Yien, A. L. Goldberger, and
C. K. Peng, Phys. Rev. LetB0, 108103(2003.
[7] C. Tsalis, J. Stat. Phy$2, 479(1988.
[8] Nonextensive Statistical Mechanics and its Applicatiedited
by S. Abe and Yu. Okamot(Springer, Berlin, 2001L
[9] S. Denisov, Phys. Lett. 235 447 (1997).
[10] M. N. Barber and B. W. NinhamRandom and Restricted
Walks(Gordon and Breach, New York, 1970

the observed behavior of the variance of DNA sequences, writ-
ten texts, and financial data. These systems are characterized
by normal diffusion[D(L) ~L] for small L values, and by a
superdiffusive behaviofD(L) ~L¢, with «>1] for large L
values.

[19] We have neglected higher-order terms, but these do not change

the results in the ¥Ly<L case.

[20] The model may be broadened to describe sub-diffusive behav-

ior as well, by considering the conditional probabiljiyk,L)
=f(31-pu[(L-2K/(L+Lx)™), where f(u)=u@(u)-(u
-1)0(u-1) and O(u) is the Heaviside step function. This
yields, forL> Ly, m>0, andu <0, a Gaussian distribution of
varianceD(L) ~L1™,

[21] For the probability distributiorP(x,L) to be an even function

of x (and thus(x)=0), the functionF(¢) should be an odd
function of its argument.

[11] N. G. van Kampen,Stochastic Processes in Physics and [22] The results of our model represent ensemble averagimg

Chemistry(North-Holland, Amsterdam, 1992

[12] R. Fernandez, J. Frohlich, and A. D. SokRlandom Walks,
Critical Phenomena, and Triviality in Quantum Field Theory
(Springer, Berlin, 199

[13] G. H. Weiss,Aspects and Applications of the Random Walk

(North-Holland, Amsterdam, 1994

[14] D. ben-Avraham and S. HavliDiffusion and Reactions in
Fractals and Disordered System@ambridge University
Press, Cambridge, 2000

[15] R. Dickman and D. ben-Avraham, Phys. Rev6g 020102R)
(2001).

[16] S. Hod, Phys. Rev. Lett90, 128701(2003.

[17] A. Schenkel, J. Zhang, and Y. C. Zhang, Fracthlg7 (1993.

[18] The introduction of the parametég is mainly motivated by

015104-4

averaging would produce different resyltSince ensemble av-
erages cannot be obtained for the natural systems of interest,
we use their time averages.

[23] DNA sequences of various organisms were obtained from ftp://

ftp.nchi.nih.gov/genomes.

[24] We have verified that for the DNA mapping usdé,G} — 0,

{C,T}—1), the distribution P(x,L=cons} is well approxi-
mated by a Gaussian. The alternative mappings yield a broader
distribution ({T,G}—0) or a large asymmetr{{C,G}— 0).

[25] A. Provata and Y. Almirantis, J. Stat. Phys06, 23 (2002;A.

Provata and Y. Almirantis, Fracta, 15 (2000;Y. Almirantis
and A. Provata, J. Stat. Phy87, 233(1999.

[26] Financial data for the DJIA and NASDAQ stock markets are

quoted from http://finance.yahoo.com.



